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Abstract: This work presents a novel greedy randomized adaptive search procedure approach for
dealing with the maximum diversity problem from a multi-objective perspective. In particular, five
of the most extended diversity metrics were considered, with the aim of maximizing all of them
simultaneously. The metrics considered have been proven to be in conflict, i.e., it is not possible to
optimize one metric without deteriorating another one. Therefore, this results in a multi-objective
optimization problem where a set of efficient solutions that are diverse with respect to all the metrics
at the same time must be obtained. A novel adaptation of the well-known greedy randomized
adaptive search procedure, which has been traditionally used for single-objective optimization, was
proposed. Two new constructive procedures are presented to generate a set of efficient solutions.
Then, the improvement phase of the proposed algorithm consists of a new efficient local search
procedure based on an exchange neighborhood structure that follows a first improvement approach.
An effective exploration of the exchange neighborhood structure is also presented, to firstly explore
the most promising ones. This feature allowed the local search proposed to limit the size of the
neighborhood explored, resulting in an efficient exploration of the solution space. The computational
experiments showed the merit of the proposed algorithm, when comparing the obtained results with
the best previous method in the literature. Additionally, new multi-objective evolutionary algorithms
derived from the state-of-the-art were also included in the comparison, to prove the quality of the
proposal. Furthermore, the differences found were supported by non-parametric statistical tests.

Keywords: diversity; multi-objective; GRASP; local search; efficient exploration

1. Introduction

The scientific community has been studying the family of the maximum diversity
problems since 1988 [1], while the first integer programming models were originally
introduced by Dhir et al. [2] and Kuo et al. [3]. The concept of diversity has evolved over
the years, and several new proposals in the literature have improved its definition [4,5],
constructing therefore a family of optimization problems. The wide interest in this family
of problems is mainly due to their practical applications in a wide variety of areas: social
network analysis, facility location problems, the generation of a set of heterogeneous
students in class, etc. All of them have been proven NP-hard combinatorial optimization
problems [3,6]. The main idea behind the diversity optimization problems relies on selecting
a subset of elements from a given set, with the aim of maximizing a certain distance measure.
The main difference among most of the proposed approaches is the way of computing the
diversity of the selected elements.

Finding a diverse set of elements has been the focus of research in several fields in the
last few years. In particular, diversity problems have been deeply studied in the context of
Facility Location Problems (FLP). In an FLP, a company is interested in opening a certain
number of facilities, selecting each location from a set of available ones. The set of selected
facilities must maximize the diversity among them, where diversity can be measured as
the physical distance among facilities or the type of service provided, among others [7].
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Additionally, maximizing diversity can be useful for locating obnoxious facilities, such
as prisons or airports, which were deeply studied in [8]. Diversity problems are also
considered in the economics field, when it is necessary to decide the investments to
maximize the expected benefit, which usually leads to selecting a set of diverse activities
to minimize the potential risk [9]. In the last few years, there has been a special effort
to analyze equity among individuals in organizations, which can also be processed by
analyzing diversity [10]. In the field of logistics, locating special units such as warehouses
with the aim of avoiding redundancy in their activities is also an interesting field of
research [11,12]. Other applications include the selection of jury members [13] or the
selection of heterogeneous results from a search [14].

As we can observe, diversity can be measured using different metrics. Before defining
the metrics studied in this paper, let us introduce some preliminary definitions common to
the problems belonging to the family of diversity optimization problems. Given a set of N
elements, the objective is to find a subset S of p elements, with p < |N|, in such a way that
the diversity of the elements included in S is maximized. In order to evaluate the diversity,
a distance metric dij, with i, j ∈ N, between every two elements must be defined. For the
sake of generality, we did not consider any specific distance metric, but any well-known
distance metric can be selected: the euclidean distance, the cosine distance, and the Jaccard
similarity index, among others [15,16]. Then, a diversity problem looks for finding the
solution S? that maximizes a certain diversity measure. More formally,

S? ← arg max
S∈SS

d(S) (1)

where SS represents the space search, i.e., the set of all possible combinations of p different
elements selected from N.

Diversity maximization problems have been traditionally tackled from a single-
objective perspective, focusing on finding the subset of the most diverse elements with
respect to a single diversity measure. However, it is interesting to analyze the results
obtained when modeling diversity as a multi-objective optimization problem. Furthermore,
in the context of real-life applications, it is difficult to select just one diversity metric that
satisfies all the constraints required by the problem. Therefore, it would be desirable to be
able to simultaneously optimize more than just one metric. In that case, we are dealing
with a Multi-objective Optimization Problem (MOP), in which several objective functions
need to be optimized at the same time. The main feature when dealing with a MOP is
that the considered objective functions are in conflict, i.e., optimizing one of them usually
results in deteriorating the other ones. Therefore, a single solution that optimizes all the
objectives at the same time does not exist. As a result, the output of a MOP is not a single
solution, but a set of efficient solutions.

The set of efficient solutions is constructed following the Pareto optimality principle,
which presents a balance for a solution where an objective function cannot be improved
while deteriorating another one. Therefore, the comparison of two solutions is given by
the concept of dominance. Specifically, given two solutions S1 and S2, we can state that S1
dominates S2 if and only if the evaluation of S1 considering each objective function is better
than or equal to the value of the corresponding objective function in S2. Otherwise, it is
said that S1 and S2 are mutually non-dominated. Following this definition, a solution S1
is considered as Pareto optimal (or an efficient solution) if there does not exists any other
solution S2 in the solution space such that S2 dominates S1. The set conformed with all the
solutions that are Pareto optimal is named the Pareto-optimal front.

In particular, this work was centered on proposing an algorithm that was able to deal
with more than one diversity measure at the same time, with the aim of finding differences
and similarities among the most extended diversity measures. This approach was originally
presented in Vera et al. [17], where the authors studied five different diversity measures
simultaneously. This problem was named the Multi-Objective Maximum Diversity Prob-
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lem (MOMDP). In particular, the authors in Vera et al. [17] proposed a multi-objective
evolutionary algorithm for dealing with the MOMDP.

In the literature, there are different approaches for dealing with multi-objective op-
timization problems [18]. The most direct adaptation of single-objective optimization
strategies to multi-objective optimization is to consider a single objective function obtained
as the weighted sum of the objectives. However, this approach usually leads to a low-
quality set of efficient solutions that are poorly distributed along the search space. One of
the most extended methods is the ε-constraint, which focuses on optimizing one of the
objectives, including the remaining objectives, as constraints that depend on some specific
thresholds. The main drawback of this approach is that finding suitable values for these
thresholds is difficult.

Recently, a new approach for solving multi-objective optimization problems has been
attracting the interest of the scientific community. This approach basically consists of
considering the set of efficient solutions as the incumbent solution for a metaheuristic. This
approach has been recently used in the context of evolutionary algorithms [19] and, specifi-
cally, genetic algorithms [20]. Additionally, other metaheuristics such as tabu search [21],
scatter search [7], variable neighborhood search [8], the greedy randomized adaptive search
procedure [22], and ant colony optimization [23] have been successfully applied for a wide
variety of multi-objective optimization problems.

In addition to these new approaches for solving multi-objective optimization problems,
several works have focused on improving the most extended evolutionary algorithms such as
Non-dominated Sorting Genetic Algorithm III (NSGA-III) or the Multiobjective Evolutionary
Algorithm with Decomposition (MOEA/D), including new operators of modifications of the
traditional ones to adapt them to the most challenging problems. Yi et al. [24] proposed an
adaptive mutation operator to be included in NSGA-III, evaluating its performance when
comparing it with the traditional operators. The performance of this new proposal was
evaluated with a set of problems derived from Big Data. Sun et al. [25] dealt with interval
multi-objective optimization problems by including new promising local search strategies,
proposing a new memetic algorithm to tackle them. In particular, they considered the
hypervolume to be maximized in the context of the local search procedure. The proposal
was evaluated with a benchmark of 10 interval multi-objective optimization problems,
comparing it with the state-of-the-art method, which did not consider local search.

This work proposed an adaptation of the well-known greedy randomized adaptive
search procedure for solving the MOMDP. The remainder of the manuscript is organized as
follows: Section 2 describes the diversity metrics considered in this work. Section 3 details
the algorithmic proposal. Section 4 presents the thorough computational experiments to
analyze the performance of the proposed algorithm, and finally, Section 5 draws the most
relevant conclusions derived from this research.

2. Diversity Metrics

In this section, we define the diversity measures studied in this work, which where
previously considered together in [17].

The first diversity measure is the Max-Sum Diversity (MSD). In this case, the diversity
of a given subset of elements is evaluated as the sum of distances between each pair of
selected elements [26], as defined in Equation (2).

MSD(S) = ∑
i,j∈S
i<j

dij (2)

The objective then is to find a solution S? that maximizes the value of the MSD. This
metric has been widely used in the context of the competitive location of facilities [11] and
the selection of jury members [13]. Several metaheuristics, such as iterated tabu search or
the GRASP with path relinking, have been proposed for this problem [27,28].
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The second diversity measure considered, named the Max-Min Diversity (MMD), is
evaluated as the minimum distance between the elements in S (see Equation (3)).

MMD(S) = min
i,j∈S
i<j

dij (3)

The objective again is to find the solution S? that maximizes the MMD. This metric
has been used in problems related to the location of obnoxious facilities [29], and it has
been tackled using the GRASP and path relinking [30].

The Max-MinSum Diversity (MMSD) is the third diversity metric considered in this
work. For each selected element i ∈ S, the sum of distances from i to the elements in
S \ {i} is computed, returning the minimum value obtained among all possible sums (see
Equation (4)).

MMSD(S) = min
i∈S

∑
j∈(S\{i})

dij (4)

The objective here is to maximize the value of the MMSD. This metric has been tradi-
tionally used in problems related to equity or in the selection of homogeneous groups [31].
Tabu search and variable neighborhood search have been widely used for this metric [32,33].

The fourth diversity measure considered in this work is named Minimum Differential
Dispersion (MDD). In order to evaluate this measure, a method very similar to the one
used to evaluate the MMSD is followed. For each selected element i ∈ S, the sum of
distances to the remaining elements in S \ {i} is computed, evaluating the MDD as the
difference between the maximum and minimum value obtained among all possible sums
(see Equation (5)).

MDD(S) = max
i∈S

∑
j∈(S\{i})

dij −min
i∈S

∑
j∈(S\{i})

dij (5)

The objective of this measure is then to find the minimum value of the MDD. This
problem has been tackled by means of the GRASP combined with path relinking and with
Variable Neighborhood Search (VNS) in recent works [31,34].

The fifth and last diversity measure considered in this work is named the Minimum
p-Center Diversity (MPCD). Evaluating this measure requires the set of selected elements
S and also a set of non-selected ones N\S. For each non-selected element i ∈ N\S,
the distance to its closest selected element j ∈ S is computed, returning the maximum
distance found (see Equation (6)).

MPCD(S) = max
i∈(N\S)

{
min
j∈S

dij

}
(6)

In this case, the objective is to minimize the value of the MPCD. This problem arises
in the context of facility location problems, where the set of selected elements refers to
the facilities that would be opened, while the set of non-selected ones represents demand
points that are required from the services of the opened facilities. This problem has been
addressed by using several metaheuristic approaches, iterated greedy [35] and VNS [36]
being the most recent ones.

Let us illustrate the evaluation of these metrics with a graphical example. Figure 1 shows
an example instance with N = {1, 2, 3, 4, 5, 6} and p = 3. Figure 1a depicts the initial set of
points, while Figure 1b,c illustrates two feasible solutions S1 = {1, 2, 4} and S2 = {1, 5, 6}
for this example, respectively. Notice that the points are set in a bi-dimensional euclidean
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space to ease the evaluation of the distances between points. Then, the detailed evaluation
of solutions S1 and S2 is performed as follows:

MSD(S1) = d1,2 + d1,4 + d2,4

= 6.71 + 8.24 + 5.39 = 20.34.

MSD(S2) = d1,5 + d1,6 + d5,6

= 5.66 + 10.20 + 8.48 = 24.34.

MMD(S1) = min(d1,2, d1,4, d2,4)

= min(6.71, 8.24, 5.39) = 5.39.

MMD(S2) = min(d1,5, d1,6, d5,6)

= min(5.66, 10.20, 8.48) = 5.66.

MMSD(S1) = min((d1,2 + d1,4), (d2,1 + d2,4), (d4,1 + d4,2))

= min(6.71 + 8.24, 6.71 + 5.39, 8.24 + 5.39)

= min(14.95, 12.09, 13.63) = 12.09.

MMSD(S2) = min((d1,5 + d1,6), (d5,1 + d5,6), (d6,1 + d6,5))

= min(5.66 + 10.20, 5.66 + 8.48, 10.20 + 8.48)

= min(10.86, 14.14, 18.68) = 14.14.

MDD(S1) = max((d1,2 + d1,4), (d2,1 + d2,4), (d4,1 + d4,2))−MMSD(S1)

= max(6.71 + 8.24, 6.71 + 5.39, 8.24 + 5.39)−MMSD(S1)

= max(14.95, 12.09, 13.63)−MMSD(S1) = 14.95− 12.09 = 2.86.

MDD(S2) = max((d1,5 + d1,6), (d5,1 + d5,6), (d6,1 + d6,5))−MMSD(S2)

= max(5.66 + 10.2, 5.66 + 8.48, 10.2 + 8.48)−MMSD(S2)

= max(10.86, 14.14, 18.68)−MMSD(S2) = 18.68− 14.14 = 4.54.

MPCD(S1) = max(min(d3,1, d3,2, d3,4), min(d5,1, d5,2, d5,4), min(d6,1, d6,2, d6,4))

= max(min(5.00, 3.16, 3.60), min(5.66, 7.28, 4.47), min(10.20, 4.12, 4.47))

= max(3.16, 4.47, 4.12) = 4.47.

MPCD(S2) = max(min(d2,1, d2,5, d2,6), min(d3,1, d3,5, d3,6), min(d4,1, d4,5, d4,6))

= max(min(6.70, 7.28, 4.12), min(5.00, 4.12, 5.39), min(8.25, 4.47, 4.47))

= max(4.13, 4.12, 4.47) = 4.47.

To sum up, Table 1 summarizes the results obtained in each one of the diversity
metrics over S1 and S2. Notice that the best result for each diversity metric is highlighted
in bold font.

Table 1. Evaluation of the five diversity metrics over the solutions S1 and S2 depicted in Figure 1.

Solution MSD MMD MMSD MDD MPCD

S1 20.34 5.39 12.09 2.86 4.47
S2 24.34 5.66 14.14 4.54 4.47
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(a) Initial set of points.

(b) Solution S1 = {1, 2, 4}. (c) Solution S2 = {1, 5, 6}.

Figure 1. Instance with 6 available points where 3 of them must be selected.

The results presented in Table 1 confirm the behavior of a MOP. In particular, S1
outperforms S2 in the MDD metric, while S2 is better than S1 in the MSD, MMD, and MMSD.
Finally, both solutions provide the same quality for the MPCD metric. Therefore, it is not
possible to state that S1 outperforms S2 or vice versa, since they are non-dominated solutions.

3. Algorithmic Proposal

This work proposed a Greedy Randomized Adaptive Search Procedure (GRASP) for
solving the MOMDP. The GRASP was originally presented in [37], but was not formally
defined until [38]. It is a very extended metaheuristic that has been successfully applied to
many hard optimization problems from a wide variety of areas [39–41]. The GRASP follows
a multi-start strategy conformed with two different stages: construction and improvement.
The former consists of a greedy randomized construction phase to generate an initial
solution, while the latter is responsible for locally improving the constructed solution. Then,
the two stages are repeated until reaching a certain stopping criterion, which is usually a
fixed number of GRASP iterations. The success of this methodology relies on the balance
between intensification and diversification in the generation of solutions, which is controlled
by a search parameter named α ∈ [0, 1], which is described in detail in Section 3.1. We refer
the reader to Festa and Resende [42] for a detailed survey, which described the most recent
advances in GRASP methodology. Next, we present both the traditional scheme and the
MOP adaptation, of each stage of the GRASP.
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3.1. Constructive Procedure

The constructive procedure in the context of the GRASP is responsible for generating an
initial high-quality solution to start the search. Instead of using a completely greedy proce-
dure, the GRASP favors diversification by including randomness in this stage. Algorithm 1
introduces the pseudocode of the proposed constructive procedure.

The constructive procedure requires three input parameters, namely: N, the set of
candidate elements to be selected; p, the number of elements that must be selected; and
α, a real number in the range [0, 1] that controls the balance between diversification and
intensification inside the GRASP methodology. In the context of the GRASP, the first element
to be included in the solution is usually selected at random from the set of available ones
N to favor diversification (Step 1). This element is then included in the solution under
construction (Step 2), and a candidate list CL is conformed with all the elements but i (Step 3).
Then, the method iteratively adds a new element to the solution until it becomes feasible,
i.e., the number of selected elements is equal to the input parameter p (Steps 4–12). In each
iteration, the minimum (gmin) and maximum (gmax) values of a certain greedy function are
computed (Steps 5–6). This greedy function g determines the contribution of each candidate
element to the quality of the solution under construction. Without loss of generality, in a
maximization problem, the larger the greedy function value, the better. Notice that, in the
case of considering a minimization problem, it is only required to negate the value of the
greedy function. We discuss later the selected greedy function for the MOMDP.

After evaluating the candidates, a threshold µ is computed (Step 7) with the aim of
constructing the restricted candidate list RCL (Step 8) with the most promising elements.
The threshold depends on the value of the input search parameter α, which controls the
greediness/randomness of the method. On the one hand, if α = 0, then µ = gmax, there-
fore RCL only contains those elements with the maximum value of the greedy function,
which results in a totally greedy criterion. On the other hand, if α = 1, then µ = gmin,
therefore resulting in a completely random criterion since all available elements are able
to enter RCL. The most adequate value for this input parameter is discussed in Section 4.
Once the RCL is constructed with the most promising elements, the next one to be included
in the solution under construction S is selected at random from it (Step 9). Finally, CL is
updated by removing the selected element (Step 10), including it in the solution (Step 11).
The methods ends when p elements have been selected, returning the constructed solution
S (Step 13).

Algorithm 1 GRASP-Constructive(N, p, α).

1: i← RND(N)
2: S← {i}
3: CL← N \ {i}
4: while |S| < p do
5: gmin ← minc∈CL g(c)
6: gmax ← maxc∈CL g(c)
7: µ← gmax − α · (gmax − gmin)
8: RCL← {c ∈ CL : g(c) ≥ µ}
9: i← RND(RCL)

10: CL← CL \ {i}
11: S← S ∪ {i}
12: end while
13: return S

This traditional scheme of GRASP constructive must be adapted to a multi-objective
optimization problem such as MOMDP. In particular, we proposed two different adap-
tations to construct feasible solutions. The first adaptation, named the Joint Alternate
Evaluation of Objectives (JALEO), is focused in using the diversity metrics presented in
Section 2 as greedy functions in each construction independently. It is performed by gen-
erating solutions that alternate each considered objective function as the greedy criterion.
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In particular, if c solutions are constructed and d diversity metrics are considered, then c/d
solutions are constructed considering each objective function as the greedy criterion. This
idea allows the constructive procedure to generate a diverse set of initial efficient solutions.
The second adaptation, named the Mixed Objective Function Algorithm (MOFA), uses
all the diversity metrics as greedy functions simultaneously in every single construction.
In order to do so, the greedy function varies from one diversity metric to another in each
iteration of the constructive procedure. In other words, the first element is selected by fol-
lowing the first greedy criterion; the second one follows the second greedy criterion, and so
on. Section 4 compares the performance of both strategies to construct initial solutions.

Finally, it is worth mentioning that each constructed solution is considered to be
included in the set of efficient solutions. In particular, if a constructed solution is dominated
by any of the solutions that are already in the set, then it is not included. On the contrary,
if it is a non-dominated solution, it is included in the set of efficient solutions, removing
those solutions already in the set that are dominated by the constructed one.

3.2. Local Improvement

The initial solutions constructed with the method described in Section 3.1 are not
necessarily local optima, and therefore, they can be further improved to find a local
optimum with respect to a certain neighborhood. The second stage of the GRASP algorithm
is responsible for finding this local optimum for each constructed solution.

The first element required to define a local search is a move operator. In the context
of the problem under consideration, we proposed the exchange move, which, given a
solution S and a set of elements N, removes a selected element i ∈ S and includes a
non-selected one j ∈ N \ S. Notice that the exchange move always results in a feasible
solution. More formally,

Exchange(S, i, j) = (S \ {i}) ∪ {j} (7)

Then, the neighborhood N (S) of a given solution S is defined as all the solutions S′

that can be reached by applying a single exchange to S. In mathematical terms,

N (S)← {S′ ← Exchange(S, i, j) ∀ i ∈ S ∧ ∀ j ∈ N \ S} (8)

The definition of a local search consists of determining how the neighborhood is
traversed during the search. Traditionally, two different approaches have been investigated:
first and best improvement. The former performs the first movement that leads to an
improvement, while the latter firstly explores the complete neighborhood, moving to the
best solution in the neighborhood. The best improvement approach usually results in a
more computationally demanding algorithm, while an improvement in the quality of the
results is not guaranteed, so we selected first improvement as the exploration strategy.

Traditional local search procedures need to define a criterion to determine if a solution
improves another one, which usually is the value of the objective function that is being
optimized. In the context of multi-objective optimization, there are several strategies that
can be followed in order to adapt a local search procedure such as optimizing each objective
independently or using a mixture function that aggregates all objectives, among others.
This work proposed a new approach that consists of considering that an improvement
has been found if the explored solution satisfies the criterion for entering in the set of
efficient solutions.

Since the first improvement strategy moves to the first improving solution found
in the neighborhood, it is relevant to determine the order in which the neighborhood is
explored. In problems in which it is not possible to determine which are the most promising
solutions in the neighborhood under exploration due to a lack of a priori information, it
is customary to randomly explore the neighborhood to favor diversity. However, in the
context of the MOMDP, we do have some insights about which are the solutions that should
be firstly explored. Since a solution in N (S) is obtained by performing a single Exchange
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move, which involves a selected element i ∈ S, and a non-selected one j ∈ (N \ S), we
can determine the order in which the elements in S are explored (analogously, with the
elements in N \ S). In particular, for each i, we compute the minimum distance to the other
selected elements, i.e., mini′∈(S\{i}) di,i′ . Then, this distance is used to sort every i ∈ S in an
ascending order, thus firstly exploring those elements with a smaller distance. On the other
hand, those elements that are not in the solution j ∈ (N \ S) are sorted in descending order
with respect to the minimum distance to the elements in S, i.e., mini∈S di,j. This ordering
allows us to firstly explore the most promising moves.

4. Experimental Results

This section has two main objectives: (i) tuning of the input parameters in order to
find the best configuration of the proposed algorithm and (ii) performing a competitive
test with the best method found in the state-of-the-art to analyze the performance of the
algorithm. All the algorithms were implemented in Java SE 11, performing the experiments
proposed on an AMD EPYC 7282 (2.8 GHz) and 8 GB RAM.

The testbed of instances considered in this work was the same as the one presented in
the best method found in the literature [17]. It was derived from the well-known MDPLIB.
Specifically, the subset named GKD was used, resulting in 145 instances ranging from
10–500 elements in each instance where the number of elements to be selected ranged
between two (for the smallest instances) and fifty (for the largest ones). This set of instances
has been widely used in the context of diversity and facility location problems.

When dealing with single-objective optimization problems, it is easy to perform a
comparison among two or more algorithms, since it is only necessary to compare the value
of the objective function obtained for each algorithm involved in the comparison. However,
in the context of multi-objective optimization, such as in the MOMDP, the output of the
algorithm is a set of efficient solutions, and therefore, it is necessary to define specific
metrics to compare sets of efficient solutions. In this work, we used some very well-known
metrics used in the literature of the MOP: coverage, hypervolume, e-indicator, and inverted
generational distance [43]. Next, we briefly describe each of them.

The coverage metric, C(R, Ê), calculates the number of solutions of the approximation
front under evaluation Ê that are dominated by a reference front R. This reference front is
computed as the set of efficient solutions resulting from the union of all the fronts involved
in the comparison. It is a good approximation of the Pareto front when the optimal one
is not known. Following this definition, the smaller the coverage value is, the better.
The hypervolume, HV, evaluates the volume in the objective space, which is covered by
the set of efficient solutions under evaluation, and therefore, the larger it is, the better.
The ε-indicator, EPS, computes which is the smallest distance required to transform every
point of the set of efficient solutions under evaluation to the closest point in the reference
front, resulting in a metric where small values are better. The last metric considered is
the inverted generational distance, IGD+, which consists of inverting the generational
distance metric with the aim of measuring the distance between the set of efficient solutions
under evaluation and the reference front. Again, the smaller it is, the better. Finally, we
also included the size of the set of efficient solutions and the computing time required by
each algorithm measured in seconds. All the tables presented in this section include the
average value of each metric along the set of considered instances, where the best value is
highlighted in bold font.

4.1. Preliminary Experiments

First of all, it is necessary to adjust the input parameters of the algorithm, which
are the value of α and the number of solutions generated. In order to avoid over-fitting,
we selected a set of 20 representative instances (13% of the complete set of instances) to
perform all the preliminary experiments. The first experiment was devoted to selecting
the best α value for each constructive procedure presented in Section 3.1. In particular, we
tested α = {0.25, 0.50, 0.75, RND}, where RND indicates that the value of α was selected at
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random for each construction. For this comparison, we fixed the number of constructions
to 100. Table 2 shows the results obtained by the JALEO constructive procedure.

Table 2. Comparison among different α values for the JALEO constructive procedure, without con-
sidering the local search procedure.

α C(R, Ê) HV EPS IGD+ Time (s) |Ê|
0.25 0.4216 0.2905 0.3484 271.8727 5.2598 17.3157
0.5 0.6383 0.1937 0.4498 278.6708 5.1725 16.6842

0.75 0.7848 0.1049 0.6554 318.9191 5.2956 20.4210
RND 0.3475 0.3048 0.2705 266.5284 5.2117 14.3684

As can be derived from the table, the best values for the multi-objective metrics were
always obtained when α = RND, followed by α = 0.25. If we analyzed the number of
solutions in the efficient front, we can see that α = RND presented the smallest value.
However, the quality of the solutions included in it was consistently better than the other
approximation fronts, and the computing time was similar for all the variants. Therefore,
we selected α = RND for the JALEO constructive procedure.

Having configured the JALEO procedure, the next experiment was designed to select
the best α value for the MOFA constructive procedure. Table 3 shows the results obtained
by the different values for the α parameter.

Table 3. Comparison among different α values for the MOFA constructive procedure.

α C(R, Ê) HV EPS IGD+ Time (s) |Ê|
0.25 0.8761 0.0645 0.6144 388.5772 5.1986 22.3889
0.5 0.6371 0.1398 0.4379 381.1797 5.3718 22.2778

0.75 0.2683 0.2659 0.3238 380.1686 5.1251 20.3333
RND 0.5340 0.2483 0.3704 387.4699 5.5100 18.1111

This time, the best values for all the multi-objective optimization metrics were obtained
by α = 0.75, with results considerably better than the rest of the values. The computing
time was again similar among all the methods, as well as the size of the efficient set
of solutions. Following these results, we selected α = 0.75 for the MOFA constructive
procedure. The third experiment, presented in Table 4, compared the results obtained by
both constructive procedures to select which was the most promising one.

Table 4. Comparison between the best configuration for the JALEO and MOFA constructive proce-
dures.

Procedure C(R, Ê) HV EPS IGD+ Time (s) |Ê|
JALEO 0.0355 0.2944 0.0776 266.5029 5.2117 14.3684
MOFA 0.8242 0.0332 1.3832 399.1720 5.1251 20.0526

The experimental results showed that the JALEO presented considerably better results
than the MOFA in all the multi-objective optimization metrics. In particular, the coverage
value of 0.0355 indicated that almost all the solutions included in the efficient set of the
JALEO were non-dominated by the reference front. Although the number of solutions
included in the approximation front of the JALEO was smaller than the number of solutions
in the one of the MOFA, we selected the JALEO since the quality of the set of efficient
solutions was better than the MOFA in all the metrics.

Vera et al. [17] analyzed the correlation among the different diversity metrics, con-
cluding that the MPCD presented a high correlation with all the other metrics except
the MDD. Furthermore, we used a profiler to analyze the performance in terms of the
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time consumption of the evaluated metrics and the effect of each metric over the final
approximation of the Pareto front. In particular, we discovered that the MPCD required
99% of the total computing time, finally providing less than 5% of the solutions included in
the approximation front. Therefore, we conducted an experiment to compare the impact
of removing the constructions with the MPCD as the greedy function, distributing these
constructions among the other diversity metrics homogeneously. Table 5 shows the effect of
including and excluding the MPCD greedy function in the JALEO constructive procedure.

Table 5. Comparison between the approximation fronts obtained by including and excluding the
MPCD greedy function in the construction phase.

C(R, Ê) HV EPS IGD+ Time (s) |Ê|
With MPCD 0.1653 0.2675 0.2588 266.4920 5.2117 14.3684

Without MPCD 0.0387 0.2940 0.1465 265.0259 0.1907 14.7895

The results confirmed the hypothesis that the effect of the MPCD in the construction
phase was negative for the final set of efficient solutions. In particular, the distribution of
the constructions originally intended for the MPCD among the other objective functions
allowed the JALEO procedure to obtain better results in all the multi-objective metrics.
It is worth mentioning that the coverage obtained when the MPCD was not considered
was really close to zero, indicating that the reference front was conformed by almost
all the solutions derived from this variant. Finally, the computing time required by this
new variant was almost negligible, being smaller than one second on average. Having
analyzed these results, the MPCD was not be considered as a greedy function in the
remaining experiments.

One of the decisions that must be made in the GRASP methodology is the number of
solutions constructed. Since the proposed constructive procedure was considerably fast, we
tested the quality of the approximation front generated when constructing from 100 to 1000
solutions in steps of 100 to analyze the convergence of the JALEO. In particular, Figure 2
shows the evolution of the coverage and hypervolume metrics when considering the
aforementioned number of constructions.

Analyzing the figure, we can see that when the number of constructions exceeded 700,
neither the coverage, nor the hypervolume were able to significantly improve the previous
results. Therefore, we constructed 700 solutions following the GRASP methodology to
generate the set of efficient solutions. It is worth mentioning that, in this experiment,
the local search procedure was not considered.

Once the initial set of efficient solutions was constructed with the JALEO constructive
procedure, we then analyzed the impact of applying the local search procedure presented
in Section 3.2. In particular, in a naive approach, the local search was applied to any of the
solutions of the efficient set. However, since the local search was the most computationally
demanding phase inside the GRASP algorithm, we proposed to limit the size of the
neighborhood explored by reducing the number of solutions analyzed in each local search
procedure. In order to do so, we included an input parameter in the local search method
that determined the percentage of elements that would be considered in the move operator.
In particular, we tested the exploration of different percentages of the efficient set (10%
to 100% in steps of 10%). Notice that this percentage indicated the amount of solutions
that were explored during each iteration of the local search, taking into account that the
neighborhood was explored from the most to the least promising solutions, as stated in
Section 3.2. Table 6 shows the results obtained in this experiment, where the local search
method was applied to each solution that was able to enter the set of efficient solutions
after the construction phase described in the previous experiment.
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Figure 2. Evolution of the coverage and hypervolume when constructing from 100 to
1000 GRASP solutions.

Table 6. Evolution of the performance of the local search procedure when considering different
percentages of elements to be explored.

% Explored C(R, Ê) HV EPS IGD+ Time (s) |Ê|
10 0.7736 0.4289 0.1870 223.4565 1.6763 762.6316
20 0.8293 0.4419 0.1547 205.2512 10.3729 2028.0000
30 0.8329 0.4587 0.1490 199.7806 30.4704 2706.7368
40 0.7753 0.4792 0.1293 188.8448 47.4544 3747.2105
50 0.7871 0.4875 0.1133 187.4518 78.9585 4013.8421
60 0.7361 0.5039 0.0994 182.6478 94.8901 4425.2632
70 0.7139 0.5031 0.1111 180.3278 111.3111 4561.5263
80 0.6079 0.5148 0.0993 177.3093 138.8253 4933.7895
90 0.5531 0.5247 0.0757 180.6202 137.7484 5485.6316

100 0.4747 0.5234 0.0794 176.6574 200.1853 5517.0000

As expected, the best results in terms of quality were obtained by exploring the com-
plete neighborhood. However, the improvement obtained when increasing the percentage
of solutions explored was not significant until reaching 80%. Even in that case, the impact
of the computing time was considerably greater than the benefits obtained in terms of
quality, being almost a hundred times slower. As a consequence, we decided to explore
only 10% of the solutions in order to have a fast and high-quality method.

Having performed this preliminary experimentation, the best configuration of the
GRASP algorithm was obtained when selecting the JALEO as the constructive procedure,
with an α value selected at random for each construction, excluding the MPCD from the
set of greedy functions used, and performing 700 constructions. Finally, the local search
was applied to each solution of the efficient set, considering the exploration of 10% of the
most promising solutions in the neighborhood to have a fast algorithm.

4.2. Competitive Testing

The main aim of this section was to perform a competitive testing between the pro-
posed algorithm and the best previous method found in the state-of-the-art to analyze
the efficiency and efficacy of the proposed GRASP algorithm. The best method found
in the literature was Vera et al. [17], where a Multi-Objective Evolutionary Algorithm
(MOEA) was presented for solving the MOMDP. In particular, the authors designed a
Non-Dominated Sorting Genetic Algorithm (NSGA-II) [44] leveraging the implementation
provided in JMetal [45]. In order to have a fair comparison, all the experiments were
run in the aforementioned computer, and we used the same implementation of NSGA-II;
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additionally, we included: the MOEA/D, a Multi-Objective Evolutionary Algorithm based
on Decomposition [46], which has been proven to be better than NSGA-II in performance
in recent works [47]; OMOPSO, a multi-objective particle swarm optimization algorithm
which includes an ε-dominance archive to increase diversification [48]; SMPSO, a more
recent multi-objective particle swarm optimization algorithm [49]; and AbYSS, a hybrid
scatter search algorithm that uses genetic algorithm operators combined with local search
strategies [50].

In this final experiment, we used the complete set of 145 instances described in Section 4.
Table 7 shows the final results of the competitive testing.

Table 7. Competitive testing of the GRASP, NSGA-II, MOEA/D, SMPSO, and AbYSS.

Algorithm C(R, Ê) HV EPS IGD+ Time (s) |Ê|
GRASP-JALEO 0.2698 0.4218 0.1499 202.0148 1.7283 762.4478

OMOPSO 0.7122 0.2276 0.3858 256.5237 3.3499 78.6194
NSGA-II 0.4464 0.3531 0.2771 213.7260 22.2315 87.0672

MOEA/D 0.2791 0.3582 0.2987 183.6221 25.2980 20.5672
SMPSO 0.7446 0.2194 0.4047 261.4600 5.8268 58.0970
AbYSS 0.6539 0.2877 0.2520 220.0354 8.4058 68.9104

The first conclusion that can be derived from these results is that MOEA/D was
the most competitive method among all the multi-objective evolutionary algorithms that
were considered. If we first analyzed the coverage, the GRASP-JALEO obtained the
best value (0.2698), closely followed by the MOEA/D. The results obtained by NSGA-II
indicated that almost half of the solutions discovered by this algorithm were dominated
by one or more solutions of the reference front. Regarding the hypervolume, we can
see that both the MOEA/D and NSGA-II reached similar results (0.3582 vs. 0.3531), the
GRASP-JALEO being considerably better than both of them in this case (0.4218). The same
analysis was performed when considering the ε-indicator, the GRASP-JALEO emerging
again as the best algorithm. However, the MOEA/D was able to reach the best value
for the IGD+ metric, followed by the GRASP-JALEO algorithm. It is worth mentioning
that the GRASP-JALEO was able to include in the set of efficient solutions an average of
762 solutions, while MOEA/D was able to include an average of just 20 solutions. Notice
that the GRASP-JALEO was more than 10 times faster than the NSGA-II and MOEA/D
approaches, requiring, on average, less than 2 s to solve an instance for the MOMDP.
Although OMOPSO, SMPSO, and AbYSS were considerably faster than NSGA-II and the
MOEA/D, they were not competitive enough in any metric, especially considering that the
GRASP-JALEO was even faster and more competitive in all the metrics considered.

We conducted a non-parametric Friedman test in order to confirm that there were
statistically significant differences among the compared algorithms. The obtained p-value
smaller than 0.0001 confirmed this hypothesis, where the GRASP-JALEO was ranked
first (2.12), followed by the MOEA/D (2.63), NSGA-II (3.25), AbySS (3.96), OMOPSO
(4.34), and SMPSO (4.70). Analyzing these results, the GRASP-JALEO emerged as one
of the most competitive algorithms for solving the MOMDP in short computing times.
Finally, we conducted the non-parametric Wilcoxon test to confirm the superiority of the
GRASP-JALEO over MOEA/D. A p-value smaller than 0.0001 supported this hypothesis.

5. Conclusions

In this paper, we presented a novel approach for solving a Multi-Objective variant of
the Maximum Diversity Problem (MOMDP) using the well-known GRASP methodology.
This kind of problem better adapts to real-life problems, where more than one objective is
usually considered. Multi-objective optimization problems have been traditionally tackled
with optimization methods claiming to be inspired by biological evolution such as: monarch
butterfly optimization [51], elephant herding optimization [52], or Harris hawks optimiza-
tion [53]. However, the adaptation of traditional metaheuristics, such as scatter search [7],
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variable neighborhood search [18], or GRASP [22] to handle this family of problems opens
a new perspective for future research for multi-objective optimization problems.

Two different constructive procedures were proposed following two completely op-
posite ideas. On the one hand, the JALEO generated solutions optimizing each one of the
greedy functions independently. On the other hand, the MOFA simultaneously optimized
all the considered diversity metrics in each construction. The experimental analysis showed
how the strategy followed in the JALEO was able to obtain the best results. Additionally,
a deep analysis was performed to evaluate the impact of considering the most computation-
ally demanding diversity metric in the proposed algorithm, concluding that its removal
benefited the quality of the generated set of efficient solutions. An efficient local search
procedure that was able to limit the neighborhood explored was presented to find a local
optimum with respect to the solutions originally included in the approximation front,
resulting in a novel adaptation of the well-known GRASP methodology for multi-objective
optimization problems. The thorough computational experimentation was supported
with non-parametric statistical tests that confirmed the superiority of our proposal, the
GRASP-JALEO emerging as the best new method for solving the MOMDP.

Based on the analysis of the results, the future research work will be focused on
changing the improvement stage of the GRASP using a full metaheuristic method, such
as variable neighborhood search, instead of a general local search. This approach is
worth researching since it could be better at escaping from local optima by changing
the neighborhood explored. Furthermore, the generated solutions could be improved
making use of a combination method such as path relinking to integrate intensification and
diversification in the search.
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